Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A camphor sample melts at $176^{\circ} C . K_{f}$ for camphor is $40\, K\, kg\, mol ^{-1}$. A solution of $0.02 \,g$ of a hydrocarbon in $0.8 \,g$ of camphor melts at $156.77^{\circ} C$. The hydrocarbon is made up of $92.3 \%$ of carbon. What is the molecular formula of the hydrocarbon?

TS EAMCET 2019

Solution:

Melting point of camphor $=176^{\circ} C$

$\left(K_{f}\right)$ for camphor $=40 \,K \,kg \, mol ^{-1}$

Mass of hydrocarbon $\left(w_{B}\right)=0.02 \,g$

Mass of camphor $\left(w_{A}\right)=0.8 \, g$

Temperature of camphor (at which it melts) $=156.77^{\circ} C$

Thus, $\Delta T_{f}$ for camphor $=176-156.77$

$=19.23^{\circ} C =19.23 \, K$

$\therefore $ Depression in freezing point,

$ \Delta T_{f} =\frac{K_{f} \times w_{B}}{M_{B}} \times \frac{1000}{W_{A}} $

$19.23 =\frac{40 \times 0.02 \times 1000}{M_{B} \times 0.8} $

Molar mass of solute $\left(M_{B}\right)$

$=\frac{40 \times 0.02 \times 1000}{19.23 \times 0.8}=52$

Element $\%$ $\frac{\%}{\text { atomic mass }}=$ mol Mol ratio
C $92.3 \% 7.7$ $7.7 / 7.7=1$
H $7.7 \% 7.7$ $7.7 / 7.7=1$
$C : H = 1 : 1 $

$\therefore $ Empirical formula $= CH$

Empirical formula weight $=12+1=13$

Multiple $(n)=\frac{\text { Molecular weight }}{\text { Empirical formula weight }}=\frac{52}{13}=4$

Thus, molecular formula $=( CH )_{4}= C _{4} H _{4}$