Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A bus starts from rest with an acceleration $ 1\,m{{s}^{-2}} $ . A man who is 48 m behind the bus starts with a uniform velocity of $ 10\text{ }m{{s}^{-1}} $ . Then the minimum rime after which the man will reach the bus

Rajasthan PETRajasthan PET 2012

Solution:

Let the minimum time after which the man catches the bus be t second. Then,
For bus, $ s=ut+\frac{1}{2}a{{t}^{2}} $
i.e., $ {{s}_{b}}=(0)(t)+\frac{1}{2}(1){{(t)}^{2}}=\frac{{{t}^{2}}}{2} $
For man $ {{s}_{m}}=(10)(t)+\frac{1}{2}(0){{t}^{2}}=10t $
From the question $ {{s}_{m}}={{s}_{b}}+48 $
$ \Rightarrow $ $ 10t=\frac{{{t}^{2}}}{2}+48 $
$ \Rightarrow $ $ {{t}^{2}}-20t+96=0 $
$ \Rightarrow $ $ (t-8)(t-12)=0 $
$ \therefore $ $ t=8\text{ }s $