Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A bullet of mass $4.2 × 10^{-2}$ kg, moving at a speed of $300\,ms^{-1}$, gets stuck into a block with a mass $9$ times that of the bullet. If the block is free to move without any kind of friction, the heat generated in the process will be

WBJEEWBJEE 2017Work, Energy and Power

Solution:

Let mass of bullet $=m$
Mass of block $=M$
Velocity of bullet $=v=300 \,m / s$
Velocity of combined system $M+m=V$
Here, from momentum conservation
$\frac{M+m}{m} V =v $
$\Rightarrow V =\frac{300 \times 42 \times 10^{-2}}{4.2 \times 10^{-2}+9\left(4.2 \times 10^{-2}\right)}$
$=30 \,m / s$
Now, heat produced = Loss in kinetic energy of builet
$=\frac{1}{2} m v^{2}-\frac{1}{2}(M+m) V^{2} $
$=\frac{1}{2} \times 4.2 \times 10^{-2}(300)^{2}-\frac{1}{2}\left(4.2 \times 10^{-2}\right.$
$+9 \times 4.2 \times 1)(30)^{2}$
$=6: 3 \times 270 $
$=1701 \,J $
$= \frac{1701}{4.2} Cal $
$= 405 \,Cal $