Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$ . The instantaneous power delivered to the body as a function of the $t$ is

NTA AbhyasNTA Abhyas 2022

Solution:

Acceleration $a=\frac{v_{1}}{t _{1}}$
$\therefore \text{Velocity}\left(\right.v\left.\right)=0+at =\frac{v_{1}}{\left(t ⁡\right)_{1}}t⁡$
Power $P =\text{Force}\times \text{velocity}=m⁡av$
or $P=m\left(\frac{v_{1}}{t_{1}}\right) \times\left(\frac{v_{1} t}{t_{1}}\right)=\frac{m v_{1}^{2} t}{t_{1}^{2}}$