Thank you for reporting, we will resolve it shortly
Q.
A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$ . The instantaneous power delivered to the body as a function of the $t$ is
NTA AbhyasNTA Abhyas 2022
Solution:
Acceleration $a=\frac{v_{1}}{t _{1}}$
$\therefore \text{Velocity}\left(\right.v\left.\right)=0+at =\frac{v_{1}}{\left(t \right)_{1}}t$
Power $P =\text{Force}\times \text{velocity}=mav$
or $P=m\left(\frac{v_{1}}{t_{1}}\right) \times\left(\frac{v_{1} t}{t_{1}}\right)=\frac{m v_{1}^{2} t}{t_{1}^{2}}$