Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A body cools from a temperature $3 T$ to $2 T$ in $10$ minutes. The room temperature is $T$ . Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next $10$ minutes will be

NTA AbhyasNTA Abhyas 2020Thermal Properties of Matter

Solution:

$\frac{T_{1} - T_{2}}{\Delta t}=K\left(\frac{T_{1} + T_{2}}{2} - T_{0}\right)$
$\frac{3 T - 2 T}{10}=K\left(2.5 T - T\right)$
$\Rightarrow \frac{T}{10}=K\left(1.5\right)T$
$K=\frac{1}{15}$
Now, $\frac{2 T - x}{10}=K\left(\frac{2 T + x}{2} - T\right)$
Solving $x=\frac{3 T}{2}$