Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A bar of cross-section $A$ is subjected to equal and opposite tensile forces at its ends. Consider a plane section of the bar, whose normal makes an angle $\theta$ with the axis of the bar.
image
Match the Column I (stress) with Column II (value) and select the correct answer from the codes given below.
Column I Column II
A The tensile stress on this plane will be 1 $0$
B The shearing stress on this plane will be 2 $(F / A) \cos ^{2} \theta$
C The tensile strength will be maximum at $\theta=$ 3 $\left(\frac{F}{2 A}\right) \sin 2 \theta$
D The shearing stress will be $\operatorname{maximum}$ at $\theta=$ 4 $45^{\circ}$

Mechanical Properties of Solids

Solution:

(b) The resolved part of $F$ along the normal is the tensile stress on this plane and the resolved part parallel to the plane is the shearing stress on the plane as shown below.
image
Given, cross-section area of bar $=A$
Let cross-section area of plane $=A^{\prime}$
then, from $\triangle P Q R$
$\because \frac{A}{A^{\prime}}=\sin \left(90^{\circ}-\theta\right)=\cos \theta$
$\therefore$ Area, $A^{\prime}=\frac{A}{\cos \theta}=A \sec$
A. Tensile stress $=\frac{\text { Force }}{\text { Area }}=\frac{F \cos \theta}{A \sec \theta}=\frac{F}{A} \cos ^{2} \theta$
$($ area of plane section $=A \sec \theta)$
B. Shearing stress $=\frac{\text { Force }}{\text { Area }}=\frac{F \sin \theta}{A \sec \theta}$
$=\frac{F}{A} \sin \theta \cos \theta=\frac{F}{2 A} \sin 2 \theta$
C. Tensile stress or strength will be maximum when $\cos ^{2} \theta$ is maximum,
i.e. $\cos \theta=1$ or $\theta=0^{\circ}$.
D. Shearing stress will be maximum when $\sin 2 \theta$ is maximum,
i.e. or $2 \theta=90^{\circ}$, i.e. $\theta=45^{\circ}$.
Hence, $A \rightarrow 2, B \rightarrow 3, C \rightarrow 1$ and $D \rightarrow 4$