Thank you for reporting, we will resolve it shortly
Q.
A ball is thrown up vertically with a certain velocity so that, it reaches a maximum height
h. Find the ratio of the times in which it is at height $\frac{ h }{3}$ while going up and coming down respectively.
$ \text { Max. Height }= h =\frac{ u ^2}{2 g } $
$ \Rightarrow u =\sqrt{2 gh }$
$ S = ut +\frac{1}{2} at ^2$
$ \frac{ h }{3}=\sqrt{2 ght }+\frac{1}{2}(- g ) t ^2$
$ \frac{ gt ^2}{2}-\sqrt{2 ght }+\frac{ h }{3}=0$
(Roots are $t _1 \& t _2$ )
$\frac{ t _2}{ t _1}=\frac{\sqrt{2 gh }+\sqrt{2 gh -4 \times \frac{ g }{2} \times \frac{ h }{3}}}{\sqrt{2 gh }-\sqrt{2 gh -4 \times \frac{ g }{2} \times \frac{ h }{3}}}$
$=\frac{\sqrt{2 gh }+\sqrt{\frac{4 gh }{3}}}{\sqrt{2 gh }-\sqrt{\frac{4 gh }{3}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$