Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A 50 g bullet moving with velocity 10 m/s strikes a block of mass 950 g at rest and gets embedded into it. The loss in kinetic energy will be
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. A 50 g bullet moving with velocity 10 m/s strikes a block of mass 950 g at rest and gets embedded into it. The loss in kinetic energy will be
Rajasthan PMT
Rajasthan PMT 2009
A
100%
B
95%
C
5%
D
50%
Solution:
For bullet, $ {{m}_{1}}=50\,\,g,\,\,{{\mu }_{1}}=10\,\,m/s $ For block, $ {{m}_{2}}=950\,\,g,\,\,{{u}_{2}}=0 $ From law of conservation of momentum, $ {{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}=({{m}_{1}}+{{m}_{2}})v $ $ 50\times 10+950\times 0=(50+950)\times v $ $ v=\frac{500}{1000}=0.5\,\,m/s $ Initial $ KE=\frac{1}{2}{{m}_{1}}u_{1}^{2}=\frac{1}{2}\times 50\times {{(1000)}^{2}} $ $ =25\times {{10}^{6}}erg $ $ \therefore $ Loss in $ KE=\frac{1}{2}{{m}_{1}}u_{1}^{2}-\frac{1}{2}({{m}_{1}}+{{m}_{2}}){{v}^{2}} $ $ \Delta K=\frac{1}{2}\times 50\times {{(1000)}^{2}}-\frac{1}{2}(50+950)\times {{(50)}^{2}} $ $ =25\times {{10}^{6}}-1250\times 1000 $ $ =25\times {{10}^{6}}-1.25\times 1000 $ $ =23.75\times {{10}^{6}}erg $ $ \therefore $ $ % $ loss in $ KE=\frac{\Delta K}{K}\times 100% $ $ =\frac{23.75\times {{10}^{6}}}{25\times {{10}^{6}}}\times 100 $ $ =95.00% $