Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A $10\, L$ box contains $O _{3}$ and $O _{2}$ at equilibrium at $2000\, K$.
$K_{P}=4.17 \times 10^{14}$ atm for $2 O _{3} \rightleftharpoons 3 O _{2} .$ Assume that $P_{ O _{2}} > > P_{ O _{3}}$ and if total pressure is $7.33\, atm$, then partial pressure of $O _{3}$ will be

Equilibrium

Solution:

$K_{p}=4.17 \times 10^{14}=\frac{\left(P_{ O _{2}}\right)^{3}}{\left(P_{ O _{3}}\right)^{2}}$
$\therefore P_{ O _{2}} > > P_{ O _{3}}$
$\therefore P_{ O _{2}}+P_{ O _{3}}=7.33$
or $P_{ O _{2}}=7.33$
$\therefore P_{ O _{3}}=\sqrt{\frac{(7.33)^{3}}{4.17 \times 10^{14}}}$
$=9.71 \times 10^{-7}$ atm