Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \frac{^{8}{{C}_{0}}}{6}{{-}^{8}}{{C}_{1}}{{+}^{8}}{{C}_{2}}\cdot 6{{-}^{8}}{{C}_{3}}{{.6}^{2}}+....{{+}^{8}}{{C}_{8}}{{\cdot 6}^{7}} $ is equal to

J & K CETJ & K CET 2009Binomial Theorem

Solution:

$ \frac{^{8}{{C}_{0}}}{6}{{-}^{8}}{{C}_{1}}{{+}^{8}}{{C}_{2}}.6{{-}^{8}}{{C}_{3}}{{6}^{2}}+....{{+}^{8}}{{C}_{8}}{{6}^{7}} $
$ =\frac{1}{6}{{[}^{3}}{{C}_{0}}-{{6}^{8}}{{C}_{1}}+{{6}^{2}}{{\,}^{8}}{{C}_{2}}-{{6}^{3}}{{\,}^{8}}{{C}_{3}}+....+{{6}^{8}}{{\,}^{6}}{{C}_{8}}] $
$ =\frac{1}{6}[{{(1-6)}^{8}}]=\frac{{{5}^{8}}}{6} $