Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $6$ boys & $6$ girls sit in a row at random. The probability that all the girls sit together is

COMEDKCOMEDK 2015Probability

Solution:

6 boys and 6 girls sit in a row in $12!$ ways. Number of ways when all six girls sit together = $7! \times 6!$
$ \therefore $ Required probability = $ \frac{ 7! \times 6!}{12!} = \frac{1}{132} $