Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $3\,\tan^{-1}a$ is equal to

Inverse Trigonometric Functions

Solution:

We know that
$ tan \,3A =\frac{ 3\,tan\,A-tan^{3}A}{1-3\,tan^{2}A}$
$\therefore 3\,A = tan^{-1} \frac{3\,tan\,A-tan^{3}A}{1-3tan^{2}A} $
Put $tan\, A = a$ i.e., $A = tan^{-1}a $
$ \therefore 3tan^{-1} a = tan^{-1} \frac{3a-a^{3}}{1-3a^{2}} $