Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $-\frac{2 \pi}{5}$ is the principal value of

Inverse Trigonometric Functions

Solution:

Since, $\frac{7 \pi}{5}$ lies in III quadrant
$\therefore \sin \left(\frac{7 \pi}{5}\right)<0$ and $\cos \left(\frac{7 \pi}{5}\right)<0$
Then, $\sec \left(\frac{7 \pi}{5}\right)<0$
$-\frac{\pi}{2} \leq \sin ^{-1}\left(\sin \frac{7 \pi}{5}\right)<0$
and $\frac{\pi}{2}<\cos ^{-1}\left(\cos \frac{7 \pi}{5}\right) \leq \pi$
and $\frac{\pi}{2}<\sec ^{-1}\left\{\sec \frac{7 \pi}{5}\right\} \leq \pi$
Hence, alternate (a) and (c) are fail
Now, $\sin ^{-1}\left(\sin \frac{7 \pi}{5}\right)=\sin ^{-1}\left(\sin \left(\pi+\frac{2 \pi}{5}\right)\right)$
$=\sin ^{-1}\left(-\sin \frac{2 \pi}{5}\right)$
$=\sin ^{-1}\left\{\sin \left(-\frac{2 \pi}{5}\right)\right\}=-\frac{2 \pi}{5}$