Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. 180 mL of hydrocarbon having the molecular weight 16 diffuses in 1.5 minutes. Under the same conditions, the time taken by 120 mL of sulphur dioxide to diffuse is :

EAMCETEAMCET 1996

Solution:

$ \frac{{{r}_{1}}}{{{r}_{2}}}=\sqrt{\frac{{{M}_{2}}}{{{M}_{1}}}} $ or $ \frac{{{V}_{1}}/{{t}_{1}}}{{{V}_{2}}/{{t}_{2}}}=\sqrt{\frac{{{M}_{2}}}{{{M}_{1}}}} $ or $ \frac{{{V}_{1}}}{{{t}_{1}}}\times \frac{{{t}_{2}}}{{{V}_{2}}}=\sqrt{\frac{{{M}_{2}}}{{{M}_{1}}}} $ or $ \frac{{{V}_{Hydrocarbon}}}{{{t}_{Hydrocarbon}}}\times \frac{{{t}_{S{{O}_{2}}}}}{{{V}_{S{{O}_{2}}}}}=\sqrt{\frac{{{M}_{S{{O}_{2}}}}}{{{M}_{Hydrocarbon}}}} $ $ {{M}_{S{{O}_{2}}}}=32+32=64 $ $ \frac{180}{1.5}\times \frac{{{t}_{S{{O}_{2}}}}}{120}=\sqrt{\frac{64}{16}} $ $ \frac{180\times {{t}_{S{{O}_{2}}}}}{1.5\times 120}=2 $ $ {{t}_{S{{O}_{2}}}}=\frac{2\times 1.5\times 120}{180}=2\,\min . $