Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $18.4 \,g \,N _{2} O _{4}$ was placed in $1 \,L$ vessel at $400\, K$ and allowed to attain the following equilibrium $N _{2} O _{4}(g) \rightleftharpoons 2 NO _{2}(g)$
If the total pressure at equilibrium was $10.64$ bar, approximate $K_{p}$ is $(R=0.083 \,L$ bar $K ^{-1} \,mol ^{-1} ) $ (Assume $N _{2} O _{4}, NO _{2}$ as ideal gases)

AP EAMCETAP EAMCET 2019

Solution:

From ideal gas equation,

$p V =n R T$

$p_{ N _{2} O _{4}} \times 1 =\frac{18.4}{92} \times 0.083 \times 400 $

$p_{ N _{2} O _{4}} =6.64$ bar

For the equilibrium reaction,
$N_2O_4(g) $ $\ce{<=>}$ $2NO_2(g)$
Initial pressure P 0
At equilibrium $P-p_{i}$ $2p_{i}$


$p_{T} =p-p_{i}+2 p_{i} $

$p_{T} =p+p_{i} $

$\Rightarrow \,p_{i}=p_{T}-p $

$p_{i} =10.64-6.64 $

$=4.00 $

At equilibrium,

$\therefore \,p_{ N _{2} O _{4}} =p-p_{i}=6.64-4 $

$=2.64$ bar

$p_{ NO _{2}} =2 p_{i}=2 \times 4$

$=8 $ bar

$\therefore \, K_{p} =\frac{\left[p_{ NO _{2}}\right]^{2}}{\left[p_{ N _{2} O _{4}}\right]} $

$=\frac{[8]^{2}}{2.64}=24.29$