Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. 10 g of bleaching powder on reaction with $ {{x}^{2}}+{{y}^{2}}={{a}^{-2}} $ required 100 mL of IN hypo. Thus, the percentage of pure bleaching powder in a given sample is

JamiaJamia 2015

Solution:

$ =\int_{1}^{2}{{{\log }_{e}}1}\,dx+\int_{2}^{3}{{{\log }_{e}}2\,\,dx}++\int_{3}^{4}{{{\log }_{e}}}3\,\,dx $ $ =0+({{\log }_{e}}2)[x]_{2}^{3}+({{\log }_{e}}3)[x]_{3}^{4} $ $ =\int_{1}^{2}{{{\log }_{e}}1}\,dx+\int_{2}^{3}{{{\log }_{e}}2\,\,dx}++\int_{3}^{4}{{{\log }_{e}}}3\,\,dx $ $ =\int_{1}^{2}{{{\log }_{e}}}[x]dx+\int_{2}^{3}{{{\log }_{e}}[x]dx}++\int_{3}^{4}{{{\log }_{e}}}[x]dx $ Thus, $ =({{\log }_{e}}2)1+({{\log }_{e}}3)1 $ Equivalent of $ ={{\log }_{e}}6 $ Thus, equivalent of $ y={{m}_{1}}x $ Equivalent of $ y={{m}_{2}}x $ Equivalent mass of $ 4\sqrt{27} $ $ 4\sqrt{18} $ Thus, percentage of $ 2.0\times {{10}^{-5}}{{/}^{o}}C $