Thank you for reporting, we will resolve it shortly
Q.
$ \left(\frac{1+i}{1-i}\right)^{n}$ is real
AMUAMU 2012Complex Numbers and Quadratic Equations
Solution:
$\left(\frac{1+i}{1-i}\right)^{n}=\left[\frac{(1+i)^{2}}{1^{2}+1^{2}}\right]^{n} $
$=\left[\frac{1-1+2 i}{2}\right]^{n}$
$=[i]^{n}$
For $(i)^{n}$ is real, $n$ should be even integer.