Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\begin{bmatrix}1&1\\ 0&1\end{bmatrix}^{-1}\begin{bmatrix}1&2\\ 0&1\end{bmatrix}^{-1}\begin{bmatrix}1&3\\ 0&1\end{bmatrix}^{-1}....\begin{bmatrix}1&100\\ 0&1\end{bmatrix}^{-1}=\begin{bmatrix}1&a\\ b&1\end{bmatrix}$, then absolute value of $a+b$ is

Matrices

Solution:

$\begin{bmatrix}1&-1\\ 0&1\end{bmatrix}\begin{bmatrix}1&-2\\ 0&1\end{bmatrix}\begin{bmatrix}1&-3\\ 0&1\end{bmatrix}...\begin{bmatrix}1&-100\\ 0&1\end{bmatrix} $
$=\begin{bmatrix}1&-\left(1+2\right)\\ 0&1\end{bmatrix}\begin{bmatrix}1&-3\\ 0&1\end{bmatrix}...\begin{bmatrix}1&-100\\ 0&1\end{bmatrix} $
$= \begin{bmatrix}1&-\left(1+2+3\right)\\ 0&1\end{bmatrix}...\begin{bmatrix}1&-100\\ 0&1\end{bmatrix} $
$= \begin{bmatrix}1&-\left(1+2+3+...+100\right)\\ 0&1\end{bmatrix} $
$\Rightarrow a=-\frac{100(101)}{2}=-5050, b=0$
$\therefore a+b=-5050$