We have, maximize Z=7x+y,
Subject to : 5x+y≥5,x+y≥3,x,y≥0.
Let ℓ1:5x+y=5 ℓ2:x+y=3 ℓ3:x=0 and ℓ4:y=0
Shaded portion is the feasible region,
Where A(3,0),B(21,25),C(0,5) For B : Solving ℓ1 and ℓ2, we get B(21,25)
Now maximize Z=7x+y
Z at A(3,0)=7(3)+0=21
Z at B(21,25)=7(21)+25=6
Z at C(0,5)=7(0)+5=5
Thus Z, is minimized at C(0,5) and its minimum value is 5