Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
y = tan-1 ((√1+a2x2 -1/ax)) ⇒ (1+a2x2)y + 2a2 xy' =
Q.
y
=
tan
−
1
(
a
x
1
+
a
2
x
2
−
1
)
⇒
(
1
+
a
2
x
2
)
y
"
+
2
a
2
x
y
′
=
2326
197
Limits and Derivatives
Report Error
A
−
2
a
2
24%
B
a
2
27%
C
2
a
3
31%
D
0
18%
Solution:
Put
a
x
=
tan
θ
∴
y
=
tan
−
1
(
t
a
n
θ
1
+
t
a
n
2
θ
−
1
)
=
tan
−
1
(
t
a
n
θ
s
e
c
θ
−
1
)
=
tan
−
1
(
s
i
n
θ
1
−
c
o
s
θ
)
=
tan
−
1
(
2
s
i
n
2
θ
c
o
s
θ
/2
2
s
i
n
2
θ
/2
)
=
2
θ
=
tan
−
1
(
tan
2
θ
)
=
2
θ
=
2
1
tan
−
1
(
a
x
)
∴
y
′
=
2
1
.
1
+
a
2
x
2
1
.
a
=
2
(
1
+
a
2
x
2
)
a
⇒
y
′
(
1
+
a
2
x
2
)
=
2
a
⇒
y
"
(
1
+
a
2
x
2
)
=
y
′
(
2
a
2
x
)
=
0
⇒
(
1
+
a
2
x
2
)
+
y
"2
a
′
x
y
′
=
0