Q.
Which of the following is True about the function f(x)=x4−4x2 ?
3022
192
J & K CETJ & K CET 2017Application of Derivatives
Report Error
Solution:
We get , f(x)=x4−4x2 ⇒f′(x)=4x3−8x =4x(x2−2) ⇒f′′(x)=12x2−8
For maxima or minima, f′(x)=0 ⇒4x(x2−2)=0 ⇒x=0,±2
Now, [f′′(x)]x=0=−8<0 [f′′(x)]x=−2=24−8=16>0
and [f′′(x)]x=−2=24−8=16>0
Thus, x=0 is a point of maxima and x=2,−2 are points of minima