Q.
When the origin is shifted to the point (23,23) by the translation of coordinate axes.then the transformed equation of 32x2+8xy+32y2−108x−108y+99=0 is
Substituting x=X+23,y=Y+23 in the equation 32x2+8xy+32y2−108x−108y+99=0
we get 32(X+23)2+8(X+23)(Y+23)+32(Y+23)2 −108(X+23)−108(Y+23)+99=0 ⇒32[X2+3X+49]+8(22X+3)(22Y+3) +32[Y2+3Y+49]−108X−162−108Y−162+99=0 ⇒32X2+96X+72+2(4XY+6X+6Y+9)+32Y2 +96Y+72−108X−162−108Y−162+99=0 ⇒32X2+32Y2+8XY−63=0