<br/>I=∫π/6π/31+cotx1dx=∫π/6π/3sinx+cosxsinxdx… (i) <br/>
Then, I=∫π/6π/3sin(2π−x)+cos(2π−x)sin(2π−x)dx <br/>⇒I=∫π/6π/3cosx+sinxcosxdx… (ii) <br/>
Adding (i) and (ii), we get <br/>2I=∫π/6π/3cosx+sinxsinx+cosxdx<br/> <br/>⇒2I=∫π/6π/31.dx=[x]π/6π/3<br/> <br/>=3π−6π=6π⇒I=π/12<br/>