Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
underset x arrow ∞ textLim (x3 ∫ limits-1 / x1 / x ( ln (1+t2)/1+et) d t) equals
Q.
x
→
∞
Lim
(
x
3
−
1/
x
∫
1/
x
1
+
e
t
l
n
(
1
+
t
2
)
d
t
)
equals
129
82
Integrals
Report Error
A
1/3
B
2/3
C
1
D
0
Solution:
Consider
I
=
−
1/
x
∫
1/
x
1
+
e
t
l
n
(
1
+
t
2
)
d
t
....(1)
=
−
1/
x
∫
1/
x
1
+
e
−
t
l
n
(
1
+
t
2
)
d
t
(Using King)
I
=
−
1/
x
∫
1/
x
1
+
e
t
l
n
(
1
+
t
2
)
e
t
d
t
…
(
2
)
(1) + (2)
2
I
=
−
1/
x
∫
1/
x
ln
(
1
+
t
2
)
d
t
=
2
0
∫
1/
x
ln
(
1
+
t
2
)
d
t
⇒
I
=
0
∫
1/
x
ln
(
1
+
t
2
)
d
t
hence
l
=
Lim
x
→
∞
x
3
0
∫
1/
x
ln
(
1
+
t
2
)
d
t
=
Lim
x
→
∞
x
−
3
0
∫
1/
x
l
n
(
1
+
t
2
)
d
t
(
0
0
form
)
Using L'Hospital's Rule
l
=
x
→
∞
Lim
−
3
x
4
l
n
(
1
+
x
2
1
)
⋅
(
−
x
2
1
)
=
3
1
x
→
∞
Lim
x
2
ln
(
1
+
x
2
1
)
=
3
1
x
→
∞
Lim
ln
(
1
+
x
2
1
)
x
2
(
1
∞
form
)
=
x
→
∞
Lim
3
1
x
2
(
1
+
x
2
1
−
1
)
=
3
1