Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
undersetx arrow 0 textLim (1/ sin x) ∫ limits0 ln (1+x)(1- tan 2 y)1 / y d y equals
Q.
x
→
0
Lim
s
i
n
x
1
0
∫
l
n
(
1
+
x
)
(
1
−
tan
2
y
)
1/
y
d
y
equals
364
76
Integrals
Report Error
A
e
−
2
B
e
C
e
2
D
e
4
Solution:
l
=
x
→
0
Lim
x
s
i
n
x
⋅
x
0
∫
l
n
(
1
+
x
)
(
1
−
t
a
n
2
y
)
1/
y
d
y
Using L'Hospital's Rule
l
=
x
→
0
Lim
(
1
+
x
)
[
1
−
t
a
n
2
(
l
n
(
1
+
x
))
]
l
n
(
1
+
x
)
1
(
1
∞
)
=
e
−
x
→
0
Lim
l
n
(
1
+
x
)
1
t
a
n
2
(
l
n
(
1
+
x
))
=
e
−
x
→
0
Lim
2
l
n
(
1
+
x
)
t
a
n
(
2
l
n
(
1
+
x
))
⋅
2
=
e
−
2
(
using
x
→
0
Lim
θ
t
a
n
θ
=
1
)