Given, Y1=Asin[k(x+ct)]...(i)
and Y2=Asin[k(x−ct)]...(ii)
By the principle of superposition, the resultant displacement of the particle is given by Y=Y1+Y2 Y=A[sin{k(x+ct)}+sin{k(x−ct)}]
By the formula sinC+sinD=2sin2C+D⋅cos2C−D
We have y=2Asin2kx+kct+kx−kct ⋅cos2kx+kct−kx+kct y=2Asinkx⋅coskct
For first antinode sinkx1=1 sinkx1=sin2π kx1=2π...(iii)
For second antinode sinkx2=−1 sinkx2=sin23π kx2=23π...(iv) ∴ The distance between adjacent antinodes kx2−kx1=23π−2π k(x2−x1)=π Δx=kπ