PLAN If two straight lines are coplanar,
i.e. a1x−x1=b1y−y1=c1z−z1
and a2x−x2=b2y−y2=c2z−z2 are coplanar
Then, (x2−x1,y2−y1,z2−z1),(a1,b1,c1) and (a2,b2,c2) are coplanar,
i.e. ∣∣x2−x1a1a2y2−y1b1b2z2−z1c1c2∣∣=0
Here, x=5,3−αy=−2z ⇒0x−5=−(α−3)y−0=−2z−0....(i)
and x=α,−1y=2−αz ⇒0x−α=−1y−0=2−αz−0....(ii) ⇒∣∣5−α0003−α−10−22−α∣∣=0 ⇒(5−α)[(3−α)(2−α)−2]=0 ⇒(5−α)[α2−5α+4]=0 ⇒(5−α)(α−1)(α−4)=0 ∴α=1,4,5