There are 11 integers from 0 to 10 , hence total number of ways of choosing x and y=11×11=121.
Now ∣x−y∣≤5⇒−5≤x−y≤5 ⇒y−5≤x≤y+5
If y=0, then −5≤x≤5 ⇒x=0,1,2,3,4,5; total 6 ways.
If y=1, then −4≤x≤6 ⇒x=0,1,2,3,4,5,6; total 7 ways.
If y=2, then −3≤x≤7 ⇒x=0,1,2,…….7; total 8 ways.
If y=3, then −2≤x≤8 ⇒x=0,1,2…….8; total 9 ways.
If y=4, then 1≤x≤9 ⇒x=0,1,2,……9; total 10 ways.
If y=5, then 0≤x≤10 ⇒x=0,1,2,……10 total 11 ways.
If y=6, then 1≤x≤11 ⇒x=1,2,3…….10; total 10 ways.
If y=7, then 2≤x≤12 ⇒x=2,3……….10; total 9 ways.
If y=8, then 3≤x≤13 ⇒x=3,4……….10; total 8 ways.
If y=9, then 4≤x≤14 ⇒x=4,5…………10; total 7 ways.
If y=10, then 5≤x≤15 ⇒x=5,6…………10; total 6 ways. ∴ Favourable number of ways =6+7+8+9+10+11+10+9+8+7+6=91. ∴ Required probability =12191.