The equation of any tangent to y2=8ax is y=mx+m2a ... (i)
If it touches x2+y2=2a2, then (m2a)2=2a2(1+m2) [∵c2=a2(1+m2)] ⇒2=m2(m2+1) ⇒m4+m2−2=0 ⇒(m2+2)(m2−1)≡0 ⇒m2−1=0 ⇒m=±1
Putting the values of m in Eq. (i), we get y=±(x+2a) as the equations of common tangents.