Given vertices of a tetrahedron are A(4i^+5j^+k^),B(−j^+k^) C(3i^+9j+4k),D(−2i^+4j^+4k^)
So, AB=−4i^−6j^AC=−i^+4j^+3k^ AD=−6i^−j^+3k^
Now, volume of the given tetrahedron is v=61∣∣∣<br/><br/>−4<br/><br/>−1<br/><br/>−6−64−1033<br/><br/>∣∣∣ =61×∣[−4(12+3)+6(−3+18)+0]∣ =61∣[−60+90]∣=630=5 cubic units