Q.
The value of x , which satisfies the equation (x−1)∣∣x2−4x+3∣∣+2x2+3x−5=0 , is
163
179
NTA AbhyasNTA Abhyas 2022Complex Numbers and Quadratic Equations
Report Error
Answer: 1
Solution:
(x−1)∣∣x2−4x+3∣∣+2x2+3x−5=0
Case I: When x2−4x+3≥0 , then x∈(−∞,1]∪[3,∞) ⇒(x−1)(x2−3x−x+3)+2x2+5x−2x−5=0 ⇒(x−1)(x2−3x−x+3+2x+5)=0 (x−1)(x2−2x+8)=0 (the value of quadratic cannot be zero since its D<0 ) ∴x−1=0 ⇒x=1
Case II: When x2−4x+3<0 , then x∈(1,3) (x−1)(−x2+4x−3+2x+5)=0 x−1=0 ∴−x2+6x+2=0 ⇒x2−6x−2=0 ⇒x=3±11
Both values will not satisfy
So, x=1