We know that (1+x)n=nC0+nC1x+nC2x2+…+nCnxn...(i)
and (x+1)n=nC0xn+nC1xn−1+nC2xn−2+…+nCn...(ii)
On multiplying Eqs. (i) and (ii), we get (1+x)2n=(nC0+nC1x+nC2x2+…+nCnxn) ×(nC0xn+nC1xn−1+nC2xn−2+…+nCn)
Coefficient of xn in RHS =(nC0)2+(nC1)2+…+(nCn)2
and coefficient of xn in LHS =2nCn ∴(nC0)2+(nC1)2+…+(nCn)2=n!n!2n! ⇒(nC1)2+…+(nCn)2=n!n!(2n)!−1 =2nCn−1