Let I=0∫π/43+sin2xsinx+cosxdx =0∫π/43+2sinxcosxsinx+cosxdx =0∫π/4−(sinx−cosx)2−4sinx+cosxdx ...(i)
Put sinx−cosx=t ⇒(cosx+sinx)dx=dt
when x=0⇒t=−1
and x=4π⇒t=0 ∴ Eq.(i) becomes, I=−−1∫0t2−4dt =−41[log∣∣t+2t−2∣∣]−10 =−41(log1−log3) =−41(0−log3)=41log3