Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits21ex (loge x + (x+1/x))dx is
Q. The value of the integral
1
∫
2
e
x
(
l
o
g
e
x
+
x
x
+
1
)
d
x
is
2047
213
WBJEE
WBJEE 2013
Integrals
Report Error
A
e
2
(
1
+
l
o
g
e
2
)
17%
B
e
2
−
e
17%
C
e
2
(
1
+
l
o
g
e
2
)
−
e
38%
D
e
2
−
e
(
1
+
l
o
g
e
2
)
28%
Solution:
Let
/
=
∫
1
2
e
x
(
lo
g
θ
x
+
x
x
+
1
)
d
x
⇒
I
=
∫
1
2
(
e
x
⋅
lo
g
e
x
+
e
x
+
x
e
x
)
d
x
⇒
I
=
∫
1
2
e
x
lo
g
θ
x
d
x
+
∫
1
2
e
x
d
x
+
∫
1
2
x
e
x
d
x
⇒
I
=
∫
1
2
e
x
lo
g
e
x
d
x
+
[
e
x
]
1
2
+
[
e
x
lo
g
θ
x
1
2
−
∫
1
2
e
x
lo
g
θ
x
d
x
⇒
I
=
(
e
2
−
e
1
)
+
(
e
2
lo
g
θ
2
−
0
)
⇒
e
2
(
1
+
lo
g
θ
2
)
−
e