Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits03αcosec(x-α)cosec(x-2α)dx is
Q. The value of the integral
0
∫
3
α
cosec
(
x
−
α
)
cosec
(
x
−
2
α
)
d
x
is
1294
171
Integrals
Report Error
A
2
sec
α
lo
g
(
2
1
cosec
α
)
0%
B
2
sec
α
lo
g
(
2
1
sec
α
)
50%
C
2
cosec
α
lo
g
(
sec
α
)
25%
D
2
cosec
α
lo
g
(
2
1
sec
α
)
25%
Solution:
0
∫
3
α
cosec
(
x
−
a
)
cosec
(
x
−
2
α
)
d
x
=
0
∫
3
α
s
in
(
x
−
α
)
s
in
(
x
−
2
α
)
1
d
x
=
0
∫
3
α
s
in
α
[
s
in
(
x
−
α
)
s
in
(
x
−
2
α
)
]
s
in
[
(
x
−
α
)
−
(
x
−
2
α
)
]
d
x
=
s
in
α
1
0
∫
3
α
s
in
(
x
−
α
)
s
in
(
x
−
2
α
)
s
in
(
x
−
α
)
cos
(
x
−
2
α
)
−
cos
(
x
−
α
)
s
in
(
x
−
2
α
)
d
x
=
s
in
α
1
[
0
∫
3
α
s
in
(
x
−
2
α
)
cos
(
x
−
2
α
)
d
x
−
0
∫
3
α
s
in
(
x
−
α
)
cos
(
x
−
α
)
d
x
]
s
in
α
1
[
∣
l
o
g
s
in
(
x
−
2
α
)
∣
0
3
α
−
∣
l
o
g
s
in
(
x
−
α
)
∣
0
3
α
]
=
s
in
α
1
[
(
l
o
g
s
in
α
−
l
o
g
s
in
(
−
2
α
)
)
]
−
[
l
o
g
(
s
in
2
α
)
−
l
o
g
s
in
(
−
α
)
]
=
s
in
α
1
[
l
o
g
s
in
2
α
s
in
α
−
l
o
g
(
−
s
in
α
−
s
in
2
α
)
]
=
s
in
α
1
[
l
o
g
s
in
2
α
s
in
α
−
l
o
g
s
in
α
s
in
2
α
]
=
s
in
α
1
[
l
o
g
2
s
in
α
cos
α
s
in
α
−
l
o
g
s
in
α
2
s
in
α
cos
α
]
=
s
in
α
1
[
l
o
g
2
cos
α
1
−
l
o
g
(
2
cos
α
)
]
=
s
in
α
1
[
−
2
l
o
g
(
2
cos
α
)
]
=
2
cosec
α
⋅
l
o
g
(
2
cos
α
)
−
1
=
2
cosec
α
⋅
l
o
g
2
1
(
sec
α
)