0∫1xcot−1(1−x2+x4)dx=0∫1xtan−1(1+x4−x21) =0∫1xtan−1(1+x2(x2−1)x2−(x2−1))dx =210∫11tan−1t2dx−21−1∫01tan−1kdx
Put x2=t ⇒2xdx=dt in the first integral
and x2−1=k ⇒2xdx=dk in the second integral. =210∫11tan−1tdt−210∫1ttan−1kdk =21(ttan−1t∣01−0∫11+t2tdt) −21(ktan−1k∣01−−1∫01+k2kdk) =21(4π−(21ln(1+t2)∣01)) −21(−4π−(21ln(1+k2)∣−10)) =(8π−41ln2)−(8−π−4110−ln2)=4π−21ln2 ⇒4π−21In2=4π−2kIn2 ⇒k=1