Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits104 ([x2] dx/[x2 - 28x + 196] + [x2]), where [x] denotes the greatest integer less than or equal to x, is :
Q. The value of the integral
4
∫
10
[
x
2
−
28
x
+
196
]
+
[
x
2
]
[
x
2
]
d
x
, where
[
x
]
denotes the greatest integer less than or equal to
x
, is :
1704
198
JEE Main
JEE Main 2016
Integrals
Report Error
A
6
13%
B
3
55%
C
7
15%
D
3
1
18%
Solution:
I
=
4
∫
10
[
x
2
−
28
x
+
196
]
+
[
x
2
]
[
x
2
]
d
x
……
.
(i)
Use property
a
∫
b
f
(
a
+
b
−
x
)
d
x
=
a
∫
b
f
(
x
)
d
x
⇒
I
=
4
∫
10
[
x
2
]
+
[
x
2
−
28
x
+
196
]
[
x
2
−
28
x
+
196
]
d
x
……
.
(ii)
by (i) and (ii)
2
I
=
4
∫
10
d
x
=
10
−
4
=
6
I
=
3