Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral displaystyle∫01(xb-1/ log x)dx is
Q. The value of the integral
∫
0
1
lo
g
x
x
b
−
1
d
x
is
1872
212
Integrals
Report Error
A
lo
g
b
27%
B
2
lo
g
(
b
+
1
)
55%
C
3
lo
g
b
9%
D
none of these
9%
Solution:
Let
I
(
b
)
=
0
∫
1
l
o
g
x
x
b
−
1
d
x
∴
I
′
(
b
)
=
0
∫
1
l
o
g
x
x
b
−
l
o
g
x
d
x
=
0
∫
1
x
b
d
x
=
∣
∣
b
+
1
x
b
+
1
∣
∣
0
1
=
b
+
1
1
∴
I
(
b
)
=
l
o
g
(
b
+
1
)
+
C
When
b
−
0.1
(
b
)
=
0
∴
c
=
0
Hence
I
(
b
)
=
l
o
g
(
b
+
1
)