Three cases may arise
Case (i) : let 0≤a<b, then x∣x∣=xx=1 ∴∫abx∣x∣dx=∫abdx=b−a=∣b∣−∣a∣ (Since∣a∣=aand∣b∣=b)
Case (ii) : Let a<b≤0, then x∣x∣=x−x=−1 ∴∫abx∣x∣dx=∫abdx=∫ab(−1)dx=a−b=−∣a∣+∣b∣ (Since∣a∣=−aand∣b∣=−b)
Case (iii) : Let a < b < 0, then ∫abx∣x∣=dx=∫abx∣x∣dx=∫abx∣x∣dx =∫ab(−1)dx=∫ab(1)dx=a+b=−∣a∣+∣b∣<br/>(Since∣a∣=−aand∣b∣=b)
Thus, in every case ∫bax∣x∣dx=∣b∣−∣a∣