Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the displaystyle lim n arrow ∞[(1/√n2)+(1/√n2-1)+(1/√n2-22)+ ldots+(1/√n2-(n-1)2)] is
Q. The value of the
n
→
∞
lim
[
n
2
1
+
n
2
−
1
1
+
n
2
−
2
2
1
+
…
+
n
2
−
(
n
−
1
)
2
1
]
is
516
82
Integrals
Report Error
A
4
π
B
3
π
C
2
π
D
None of these
Solution:
n
→
∞
Lim
[
n
2
1
+
n
2
−
1
1
+
n
2
−
2
2
1
+
……
+
n
2
−
(
n
−
1
)
2
1
]
=
n
→
∞
Lim
[
n
2
−
0
2
1
+
n
2
−
1
2
1
+
……
+
n
2
−
(
n
−
1
)
2
1
]
=
n
→
∞
Lim
r
=
0
∑
n
−
1
n
2
−
r
2
1
=
n
→
∞
Lim
r
=
0
∑
n
−
1
n
1
⋅
1
−
r
2
/
n
2
1
=
0
∫
1
1
−
x
2
d
x
=
[
sin
−
1
x
]
0
1
=
2
π