Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the determinant |ka&k2+a2&1 kb&k2+b2&1 kc&k2+c2&1| is
Q. The value of the determinant
∣
∣
ka
kb
k
c
k
2
+
a
2
k
2
+
b
2
k
2
+
c
2
1
1
1
∣
∣
is
3187
229
Determinants
Report Error
A
k
(
a
+
b
)
(
b
+
c
)
(
c
+
a
)
B
kab
c
(
a
2
+
b
2
+
c
2
)
C
k
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
D
k
(
a
+
b
−
c
)
(
b
+
c
−
a
)
(
c
+
a
−
b
)
Solution:
We have,
∣
∣
ka
kb
k
c
k
2
+
a
2
k
2
+
b
2
k
2
+
c
2
1
1
1
∣
∣
=
∣
∣
ka
kb
k
c
k
2
k
2
k
2
1
1
1
∣
∣
+
∣
∣
ka
kb
k
c
a
2
b
2
c
2
1
1
1
∣
∣
=
0
+
k
∣
∣
a
b
c
a
2
b
2
c
2
1
1
1
∣
∣
=
k
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)