Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the determinant| beginmatrix1&1&1 mC1&m+1C1&m+2C1 mC2&m+1C2&m+2C2 endmatrix|is equal to
Q. The value of the determinant
∣
∣
1
m
C
1
m
C
2
1
m
+
1
C
1
m
+
1
C
2
1
m
+
2
C
1
m
+
2
C
2
∣
∣
is equal to
1846
207
Determinants
Report Error
A
1
35%
B
−
1
20%
C
0
35%
D
none of these
9%
Solution:
∣
∣
1
m
C
1
m
C
2
1
m
+
1
C
1
m
+
1
C
2
1
m
+
2
C
1
m
+
2
C
2
∣
∣
=
∣
∣
1
m
C
1
m
C
2
1
m
+
1
C
1
m
+
1
C
2
1
m
+
1
C
0
+
m
+
1
C
1
m
+
1
C
1
+
m
+
1
C
2
∣
∣
=
∣
∣
1
m
C
1
m
C
2
1
m
+
1
C
1
m
+
1
C
2
0
m
+
1
C
0
m
+
1
C
1
∣
∣
[
Applying
C
3
→
C
3
−
C
2
]
=
∣
∣
1
m
C
1
m
C
2
1
m
C
0
+
m
C
1
m
C
1
+
m
C
2
0
m
+
1
C
0
m
+
1
C
1
∣
∣
=
∣
∣
1
m
C
1
m
C
2
0
m
C
0
m
C
1
0
m
+
1
C
0
m
+
1
C
1
∣
∣
[
Applying
C
2
→
C
2
−
C
1
]
=
m
C
0
m
+
1
C
1
−
m
+
1
C
0
m
C
1
=
m
+
1
−
m
=
1