Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the determinant | b+c q+r y+z c+a r+p z+x a+b p+q x+y | text is
Q. The value of the determinant
∣
∣
b
+
c
c
+
a
a
+
b
q
+
r
r
+
p
p
+
q
y
+
z
z
+
x
x
+
y
∣
∣
is
263
136
Determinants
Report Error
A
2
∣
∣
a
b
c
p
q
r
x
y
z
∣
∣
B
∣
∣
a
b
c
p
q
r
x
y
z
∣
∣
C
−
∣
∣
a
b
c
p
q
r
x
y
z
∣
∣
D
0
Solution:
Here,
∣
∣
b
+
c
c
+
a
a
+
b
q
+
r
r
+
p
p
+
q
y
+
z
z
+
x
x
+
y
∣
∣
=
∣
∣
b
+
c
q
+
r
y
+
z
c
+
a
r
+
p
z
+
x
a
+
b
p
+
q
x
+
y
∣
∣
(interchange row and column)
=
∣
∣
b
+
c
q
+
r
y
+
z
c
+
a
r
+
p
z
+
x
−
2
c
−
2
r
−
2
z
∣
∣
using
C
3
→
C
3
−
(
C
1
+
C
2
)
=
−
2
∣
∣
b
+
c
q
+
r
y
+
z
c
+
a
r
+
p
z
+
x
c
r
z
∣
∣
(taking -2 common from
C
3
)
=
−
2
∣
∣
b
q
y
a
p
x
c
r
z
∣
∣
(using
C
1
→
C
1
−
C
3
and
C
2
→
C
2
−
C
3
)
=
2
∣
∣
a
p
x
b
q
y
c
r
z
∣
∣
(using
C
1
↔
C
2
)
=
2
∣
∣
a
b
c
p
q
r
x
y
z
∣
∣
(interchange column and row)