Let L1=tan{sin−1(cos(sin−1x))};x∈(0,2π) and
L2=tan{cos−1(sin(cos−1x))};x∈(0,2π)
We have to find the value of L1⋅L2L1=tan{sin−1(cos(sin−1x))}⇒L1=tan{sin−1(cos(cos−11−x2))}⇒L1=tan{sin−1(1−x2)}⇒L1=tan{tan−1(x1−x2)}⇒L1=x1−x2
Now take
L2=tan{cos−1(sin(cos−1x))}⇒L2=tan{cos−1(sin(sin−11−x2))}⇒L2=tan{cos−1(1−x2)}⇒L2=tan{tan−1(1−x2x)}⇒L2=1−x2x∴L1⋅L2=x1−x2×1−x2x=1