Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of tan (α+β), given that cot α=(1/2), α ∈(π, (3 π/2)) and sec β=(-5/3), β ∈((π/2), π) is
Q. The value of
tan
(
α
+
β
)
, given that
cot
α
=
2
1
,
α
∈
(
π
,
2
3
π
)
and
sec
β
=
3
−
5
,
β
∈
(
2
π
,
π
)
is
1925
199
Trigonometric Functions
Report Error
A
11
1
9%
B
11
2
55%
C
11
5
28%
D
11
3
9%
Solution:
Given,
cot
α
=
2
1
⇒
tan
α
=
2
and
sec
β
=
3
−
5
Then,
tan
β
=
sec
2
β
−
1
⇒
tan
β
=
±
9
25
−
1
=
±
9
16
⇒
tan
β
=
±
3
4
But,
tan
β
=
3
−
4
[
∵
tan
β
is negative in
I
I
I
d
quadrant
]
∴
tan
(
α
+
β
)
=
1
−
t
a
n
α
⋅
t
a
n
β
t
a
n
α
+
t
a
n
β
=
1
−
(
2
)
(
3
−
4
)
2
+
(
−
3
4
)
=
11
2
.