Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limitsπ/2-π/2 (dx/[x]+[ sin x]+4) where [t] denotes the greatest integer less than or equal to t, is :
Q. The value of
−
π
/2
∫
π
/2
[
x
]
+
[
s
i
n
x
]
+
4
d
x
where [t] denotes the greatest integer less than or equal to t, is :
3064
210
JEE Main
JEE Main 2019
Integrals
Report Error
A
12
1
(
7
π
+
5
)
14%
B
10
3
(
4
π
−
3
)
14%
C
12
1
(
7
π
−
5
)
7%
D
20
3
(
4
π
−
3
)
64%
Solution:
I
=
∫
2
−
π
2
π
[
x
]
+
[
s
i
n
x
]
+
4
d
x
=
∫
2
−
π
−
1
−
2
−
1
+
4
d
x
+
∫
−
1
0
−
1
−
1
+
4
d
x
+
∫
0
1
0
+
0
+
4
d
x
+
∫
1
2
π
1
+
0
+
4
d
x
∫
2
−
π
−
1
1
d
x
+
∫
−
1
0
2
d
x
+
∫
0
1
4
d
x
+
∫
1
2
π
5
d
x
(
1
−
+
2
π
)
+
2
1
(
0
+
1
)
+
4
1
+
5
1
(
2
π
−
1
)
−
1
+
2
1
+
4
1
−
5
1
+
2
π
+
10
π
20
−
20
+
10
+
5
−
4
+
10
6
π
20
−
9
+
5
3
π