We have I=0∫π/21+m2tan2xtanxdx =0∫π/21+m2cos2xsin2xcosxsinxdx =0∫π/2cos2x+m2sin2xsinxcosxdx =0∫π/21−sin2x+m2sin2xsinxcosxdx =0∫π/21−sin2x(1−m2)sin2cosxdx
Put, sin2x=t⇒2sinxcosxdx=dt
If x=0,t=0
If x=2π, then t=1 ∴I=210∫11−t(1−m2)dt =21[−log∣∣1−t(1−m2)∣∣×1−m21]01 =21[m2−11{log∣∣1−(1−m2)−log(1)∣∣}] =21×m2−11log∣∣m2∣∣=2(m2−1)2logm=m2−1logm