Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits01 (8 log (1+x)/1+x2) d x is
Q. The value of
0
∫
1
1
+
x
2
8
l
o
g
(
1
+
x
)
d
x
is
1321
180
AIEEE
AIEEE 2011
Integrals
Report Error
A
lo
g
2
0%
B
π
lo
g
2
20%
C
8
π
lo
g
2
60%
D
2
π
lo
g
2
20%
Solution:
We have,
I
=
0
∫
1
1
+
x
2
8
l
o
g
(
1
+
x
)
d
x
Put
x
=
tan
θ
⇒
I
=
0
∫
4
π
8
⋅
s
e
c
2
θ
l
o
g
(
1
+
t
a
n
θ
)
sec
2
θ
d
θ
=
8
0
∫
π
/4
lo
g
(
1
+
tan
θ
)
d
θ
=
8
0
∫
π
/4
lo
g
(
1
+
1
+
t
a
n
θ
1
−
t
a
n
θ
)
d
θ
=
8
0
∫
π
/4
lo
g
(
1
+
t
a
n
θ
2
)
d
θ
=
8
(
lo
g
2
)
⋅
4
π
−
I
⇒
2
I
=
2
π
lo
g
2
⇒
I
=
π
lo
g
2