Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ (ex(x2 tan -1 x + tan-1 x+1)/x2 + 1) dx is equal to
Q. The value of
∫
x
2
+
1
e
x
(
x
2
t
a
n
−
1
x
+
t
a
n
−
1
x
+
1
)
d
x
is equal to
2511
211
KCET
KCET 2016
Integrals
Report Error
A
e
x
tan
−
1
x
+
c
46%
B
−
tan
−
1
x
(
e
x
)
+
c
21%
C
tan
−
1
(
x
e
)
+
c
19%
D
e
t
a
n
−
1
x
+
c
14%
Solution:
Let
I
=
∫
e
x
(
x
2
+
1
x
2
t
a
n
−
1
x
+
t
a
n
−
1
x
+
1
)
d
x
⇒
I
=
∫
e
x
(
tan
−
1
x
+
x
2
+
1
1
)
d
x
If
f
(
x
)
=
tan
−
1
x
, then
f
′
(
x
)
=
x
2
+
1
1
∴
I
=
∫
e
x
(
tan
−
1
x
+
x
2
+
1
1
)
d
x
=
e
x
tan
−
1
x
+
C
[
∵
∫
e
x
[
f
(
x
)
+
f
′
(
x
)
]
d
x
=
e
x
f
(
x
)
+
C
]