Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫0 (π/2) ( cos 3x+1/ cos 2x-1)dx is
Q. The value of
∫
0
2
π
c
o
s
2
x
−
1
c
o
s
3
x
+
1
d
x
is
1639
172
Integrals
Report Error
A
2
5%
B
1
27%
C
2
1
45%
D
0
23%
Solution:
Integrand
=
2
(
cos
x
−
cos
3
π
)
cos
3
x
−
cos
(
3
3
π
)
=
2
(
cos
x
−
cos
α
)
(
4
co
s
3
x
−
3
cos
x
)
−
(
4
co
s
3
α
−
3
cos
α
)
(where
α
=
3
π
)
=
2
1
[
4
(
co
s
2
x
+
cos
x
cos
α
+
co
s
2
α
)
−
3
]
∴
given integral
=
2
4
0
∫
π
2
(
co
s
2
x
+
cos
x
cos
α
)
d
x
−
2
3
0
∫
π
/2
d
x
=
2
[
2
1
⋅
2
π
+
2
1
⋅
1
+
4
1
⋅
2
π
]
−
2
3
⋅
2
π
=
2
π
+
1
+
4
π
−
4
3
π
=
1